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Abstract
Video-based eye tracking techniques have become 

increasingly attractive in many research fields, such as visual 
perception and human-computer interface design. Most techniques 
rely on the vector difference between the center of the eye’s pupil 
and the first-surface reflection at the cornea, the corneal reflection 
(CR).  The vector difference is well correlated to an observer’s 
point of regard (POR). A crucial problem in this rapidly 
developing field is the fast, accurate detection and estimation of 
the pupil center. In this paper, artificial pupil images are modeled 
with four kinds of artifact corruptions. Then four popular pupil 
locating algorithms (center of gravity, circular Hough transform, 
ellipse fitting, and snake greedy algorithm with ellipse fitting) for 
isolating and measuring the pupil are implemented, and their 
performances are evaluated. The results will give researchers 
useful information for building future video-based eyetrackers. 

Introduction
The problem of eye tracking has been studied by a number of 

researchers; its applications include broad areas, such as clinical 
diagnosis, eye movement study, and human-machine interface 
design. According to what physiological features are used, there 
are three general categories: electro-oculography (EOG), scleral 
search coil, and reflected-light based techniques. All these 
techniques have inherent merits and flaws. They are filled with 
compromises in regard to comfort, accuracy, noise, cost, ease of 
calibration, and suitability for a large population. Because of the 
low obtrusiveness to subjects, moderate accuracy and precision, 
and reliance on rapidly developing optical and electronic imaging 
devices, video-based eyetrackers have become one of the most 
popular and successful eye-tracking techniques.  

Video-based techniques simultaneously record the images of 
the pupil and corneal reflection (CR) of a light source. Although 
the pupil and CR are both sensitive to translational eye movements, 
their displacement vector (P-CR) provides a signal changing 
primarily with rotational eye movements (Figure 1). As such, the 
video-based techniques are tolerant of small head movements 
(such as, headband slippages, camera movements, and muscular 
tremors), which are serious problems in some other reflected-light 
based techniques (e.g., limbus eyetrackers). The functional 
relationship[1] between the displacement vector and the point of 
regard (POR) is described by a simple equation: 

)sin(kPOR (1)
where k is the distance between the apparent pupil center 
and cornea center, and is the angular gaze direction with 
respect to the light source and camera. 

Figure 1. Eye movement and camera movement. (a) Eye image before an 
eye movement; (b) After the eye movement. The P-CR vector has changed. (c) 
Before a camera movement; (d) After the camera movement. The P-CR 
vector has not changed. Courtesy of Kolakowski and Pelz, 2006 [2]. 

In an eye image from the video-based eyetracker (Figure 1), 
the corneal reflection is the brightest spot, so it is usually not hard 
to extract by a thresholding technique. In addition, the CR is quite 
small (about 0.1% in Figure 1 (a)) which means the mis-locating of 
its center will not have as substantial an effect as the pupil for 
determining the P-CR. On the other hand, the pupil has a relative 
low contrast with its surroundings (e.g., iris) and subtends a 
relatively large region (about 2% in Figure 1 (a)); thus the accurate 
locating of its center is crucial. Even a 1mm (4 pixels in a common 
17” CRT monitor) head movement parallel to the camera plane 
will induce an eye rotational error of about 6° (taking the distance 
between the apparent pupil and the rotational center of the eye as 
9.5mm).

Due to the importance of locating the pupil center accurately, 
a lot of studies have been done to address the problem. The 
mainstream work can be divided into three categories: (1) area-
based [3, 4]; (2) edge-based [5, 6]; and (3) Hough transform [7].  
The area-based method detects the pupil region first and uses all 
pupil points to calculate the centroid. The edge-based method 
determines the pupil position by isolating the pupil-iris boundary, 
and the edge points are averaged or fitted by a circle or ellipse. The 
Hough transform (circle or ellipse) obtains the pupil parameter by 
transforming the edge image of the pupil into a parameter space 
and votes to acquire the optimal pupil center and circumference.  

In this paper, the basic ideas of four pupil center locating 
algorithms, the center of gravity[4], ellipse fitting[6,8], circular 
Hough transform[7], and snake greedy algorithm[9] with ellipse 
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fitting, are first introduced. An artificial pupil model is then 
described followed by a listing of four simulated artifacts in pupil 
images, Gaussian noise, eye lid occlusion, CR superimposition, 
and uneven illumination. The performances of the algorithms when 
dealing with these four group images are evaluated. The paper is 
finalized by bringing forward conclusions and suggestions for 
future work.   

Algorithms for Locating Pupil Center 

Center of Gravity 
The center of gravity of the pupil image ( COGX , COGY ) is 

calculated by geometrical moments, and the equations are listed as 
follows:
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where iI  is the intensity, ix and iy are the coordinates of the i-pixel.  

Direct Ellipse-Specific Fitting 
A general conic is given: 
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Finding a fitting ellipse equals minimizing the sum of the squared 
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the conic, given a quadratic constraint 14 '2 Caaacb . The 
minimization promises to be solved by a generalized eigenvalue 
problem:

CaSaDaD ' (4)
where C is a 6×6 constraint matrix and DDS ' is the scatter 
matrix. Its only negative eigenvalue provides the exact solution, 
giving an optimal fitting ellipse[8].   

Circular Hough Transform 
The Hough transform converts the original spatial information 

in an image into a parameter space representation. The parametric 
equation for a circle is  

sin,cos rbyrax (5)
where a and b are the coordinates of circle center and r is the radius.  

In the parameter space, a,b,r become three variables, and a set 
of cones are yielded for a train of pixels (x,y). If all the edge pixels 
belong to the same circle in the spatial image, the corresponding 
cones in the parameter space will all share a single common 
intersection point. The cones become two-dimensional circles if 
the radius of the circle is known. 

Snake Greedy Algorithm 
Snakes, also called active contours, are an important class of 

algorithms for finding an object boundary given an initial search 
curvature. The curvature is represented as v(s) = (x(s), y(s)),
having the arc length s as the parameter [9]. The process is to 
optimize an energy function: 

dsEsEsEs imgcurvcont )()()(                             (6) 

where , and are weighting parameters, and contE
represents the continuity (tension) term which encourages the 

curvature to shrink to a point; curvE  is called the curvature 
(stiffness) term which controls the smoothness of the 
curvature; imgE is the image force which attracts the curvature 
toward certain image features (edges in our implementation).  

The greedy algorithm only considers closed contours, and its 
computation is divided into two steps during each iteration [10]: 

(1) Move each contour point to the point which has a 
minimum in a predefined small window; 

(2) Search for a point having a curvature maximum along the 
contour and set 0i at that point for the next iteration. 

The greedy algorithm returns contour points whose energy 
functions reach local minima. Those points are then fed into the 
ellipse fitting algorithm to find the pupil parameters.  

Pupil Model 
The synthetic pupil is modeled as a circular disk [3]. Its 

mathematical representation is given by 
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where ),( cc yx are the center coordinates of the pupil; R is the 
radius; and s controls the edge sharpness. A moderate s of 60 is 
used in all test images. The modeled pupil image is a 256 grayscale 
image where black pixels describe the pupil and white pixels 
represent the background. The pupil diameter is 50 pixels 
occupying about 2.5% in a 320×240 image. The images are added 
in “pepper and salt” noise with the density of 0.02 and then 
lowpass filtered by a 3×3 matrix to correlate the independent noise 
with the image [3]. This operation is to simulate images with shot 
noise from an imaging sensor. For evaluating the influence of 
different artifacts, four groups of pupil images are generated.   

Image Corrupted by Gaussian Noise 
The added-in Gaussian noise has a zero mean; its variance v 

changes from 0 to 0.08 by the step size of 0.02.  Three sample 
images are shown in Figure 2.  

Figure 2. Pupil images with different add-in Gaussian noise v. (a) v=0; (b) 
v=0.04; (c) v=0.08; (d)(e)(f) are the corresponding thresholded images. 

Image Corrupted by Eyelid Occlusion 
The pupil is unavoidably occluded by the eyelid in some 

circumstances, especially when the subject looks to extreme 
positions (e.g., looks down). Pupil images in the second group are 
covered partially by 5%, 25%, 50% at the upper edge and 5%, 75% 
at the upper-right corner (Figure 3). The variance of added-in 
Gaussian noise is 0.04. 



Figure 3. Pupil images with different degree occlusions. (a) 5% upper edge; 
(b) 25% upper edge; (c) 50% upper edge; (d) 5% corner;(e ) 75% corner 

Image Corrupted by the Corneal Reflection 
In some approaches for locating the pupil center, the corneal 

reflection is removed through image processing [5, 11]. However, 
the removal of the CR and other specular reflections (e.g., glare on 
the glasses) may not be perfect. It is worth testing the algorithms 
when such unwanted reflections (for locating the pupil) exist. Two 
different sizes of the CRs, generated by the same model as the 
pupil, are superimposed on the images at three different locations 
(Figure 4). The variance of added-in Gaussian noise is 0.04. 

Figure 4. Pupil images with the corneal reflection at three different positions. 
(a)(b)(c)The diameter of the CR is 7.5 pixels; (d)(e)(f)The diameter is 15 pixels. 

Image Corrupted by Uneven Illumination
The last group mimics uneven illumination in the eye image, 

which may make the detection of the pupil area or edges very 
challenging. The images are generated by using the “gradient fill” 
tool in Photoshop 8.0. The pixels of the circle at the begin-fill 
position and end-fill position are chosen as 255 and 0, respectively. 
The midpoint fill point is selected at ten levels between 15% and 
60% with a five-unit increase in each step (Figure 5). The images 
are added in the “salt and pepper” noise using the same routine as 
that used in the other groups. No Gaussian noise is added. 

Figure 5. Pupil images with uneven illumination. The midpoint fill point is 
selected at (a)20%; (b)30%; (c)40%; (d)50%; (e)60%. 

Results and Discussions 

Fifty images for each level in every group are generated. The 
mean deviation between the estimated center and the real position 
is used to evaluate the performance. The noise is reduced by 
convolving the image with a 5×5 Gaussian filter (standard 
deviation - STD equals 2). A consistent threshold is then applied to 
the filtered images followed by a Sobel edge detector if necessary 
(e.g., for ellipse fitting). The images with heavy noise (Figure 2 (f)) 
may not be thresholded perfectly so that it mimics a real situation. 
The Hough transform is given a known radius of 40. The images in 
testing the snake greedy algorithm are filtered by a STD 20 
Gaussian filter so that the resultant fat edges are taken as initial 
snake points. The final snake points after five loops are fed into the 
ellipse fitting method. 

The algorithms, except for the Hough transform, give a 
consistent performance when dealing with different levels of 
Gaussian noise, while the snake greedy algorithm with the ellipse 
fitting provides the fewest errors (Figure 6). The mean 
computation time for each image for every algorithm is 0.18s, 0.2s, 
0.19s, and 1.63s, respectively (using MATLAB 7 in a Pentium 4 
1.6GHz, 1GB memory laptop). Note the Hough transform is given 
a known radius that reduces its computation burden dramatically.  

Figure 6. Algorithm performances at different noise levels 

For all algorithms, the errors increase when the occlusion 
levels increase (Figure 7). At low occlusion (5%), they give close 
results though the Hough transform slightly outperforms the others. 
All methods fail to provide good measures when heavy cover 
happens (75%). As such, positioning the eye camera carefully to 
make it capable of capturing the whole pupil area, even when the 
eye moves to extreme positions, is critical. The error of image 
moment increases dramatically when the occlusion levels increase. 

Figure 7. Algorithm performances at different occlusions 



Based on Figure 8, the error of the image-moment method 
also increases significantly with the CR size increases, except 
when the CR is centered. Those of the ellipse fitting and snake 
greedy algorithm with the ellipse fitting keep consistent. The snake 
greedy algorithm with the ellipse fitting is preferable when the CR 
is centered and at the boundary, but its superiority declines when 
the CR falls between the pupil center and the boundary.  

Figure 8. Algorithm performances when dealing with the corneal reflection. (a) 
The diameter of the CR is 7.5; (b) The diameter of the CR is 15. 

 Obviously, the Hough transform excels the others in this trial 
(Figure 9). The method does a good job when the eye image is 
unevenly illuminated; its performance has not been worse when 
the lighting uniformity deteriorates. The snake greedy algorithm 
with the ellipse fitting is superior to the image moment method and 
direct ellipse fitting, especially when the image is slightly 
unevenly-illuminated. 

Figure 9. Algorithm performances for unevenly illuminated images.  

Conclusion
Among these commonly used pupil locating algorithms, the 

snake greedy algorithm with the ellipse fitting has an overall best 
performance if the eye camera is positioned carefully and the 
uneven illumination is avoided. However, the method would only 
be a good choice when working on off-line analysis. The Hough 
transform gives fewer errors than the other methods when the eye 
images are unevenly illuminated.  The image moment method has 
significantly increased errors when the occlusions, CR size and/or 
uneven illumination worsen. This method should be rejected in 
these situations, but may still be useful for “normal” pupil images 
(e.g., no artifacts like above), those which happen most frequently, 
because of its real-time efficiency. Another approach for locating 
the pupil accurately could be a mixed scheme which seeks an 
optimal method for one or several kinds of artifacts, while applies 
other methods to take care of other undesirable situations. 

In this paper, the artificial pupil images are used for testing 
the performance of the algorithms. Future work will encompass 
real eye images from a video-based eyetracker. The author also 
suspects that the performance of the snake greedy algorithm with 
the ellipse fitting can be improved further if other force constraint 
techniques are adopted instead of the greedy algorithm.  These 
works are left for future research. 
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